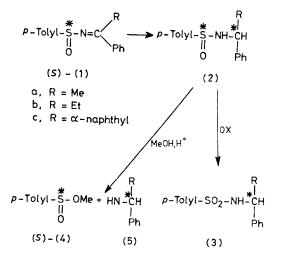
## β-Asymmetric Induction in the Reduction of N-Alkylidenesulphinamides. Synthesis of Optically Active Amines

By MAURO CINQUINI and FRANCO COZZI


(Centro C.N.R. e Istituto di Chimica Industriale dell'Universita,' Via C. Golgi 19, 20133 Milano, Italy)

Summary Asymmetric synthesis occurs in the reduction by  $\text{LiAlH}_4$  of optically active N-alkylidenesulphinamides; the sulphinamides thus obtained can be oxidized to optically active sulphonamides or cleaved to optically active amines of high optical purity.

OPTICALLY active N-alkylidenesulphinamides (1) are easily accessible by the reaction of a Grignard reagent with a nitrile and subsequent reaction with an optically active sulphinate.<sup>1</sup> In compounds (1) the four ligands on the chiral sulphur atom are very different from each other: a lone pair, and oxygen, nitrogen, and carbon atoms. It seemed likely, by analogy with other sulphur derivatives, especially sulphoxides,<sup>2</sup> that the chiral centre of N-alkylidenesulphinamides could give rise to an high degree of asymmetric induction.

We report that the derivatives (1a-c) are reduced in high yield by lithium aluminium hydride to afford unequal amounts of the corresponding stereoisomeric sulphinamides (2a-c), the diastereomeric ratio being in the range 9:1 to 8:2 (evaluated by <sup>1</sup>H n.m.r. spectroscopy) in the cases examined.

Starting from optically pure (S)- $(\mathbf{1a})$ ,  $[\alpha]_{\mathbf{D}}^{2\mathbf{5}} + 98\cdot0^{\circ}$ (CHCl<sub>3</sub>), a mixture of optically active sulphinamides (S,S)- $(\mathbf{2a})$  and (S,R)- $(\mathbf{2a})$  was obtained, which was oxidized with *N*-chlorobenzotriazole in methanol<sup>3</sup> to the corresponding optically active sulphonamide (-)- $(\mathbf{3a})$ . Similarly, reduction of optically active (S)- $(\mathbf{1b})$ ,  $[\alpha]_{\mathbf{D}}^{2\mathbf{5}} + 26\cdot2^{\circ}$  (CHCl<sub>3</sub>) and (S)-(1c),  $[\alpha]_{25}^{25} + 7 \cdot 1^{\circ}$  (CHCl<sub>3</sub>), and subsequent oxidation afforded the optically active sulphonamides (-)-(3b) and (+)-(3c) (see Table). This confirms that asymmetric induction is occurring in the conversion (1)  $\rightarrow$  (2).



The sulphonamide (S)-(3a),<sup>4</sup>  $[\alpha]_{20}^{20} - 79\cdot3^{\circ}$  (benzene), and the diastereomeric sulphinamides (S,S)-(2a),<sup>5</sup>  $[\alpha]_{23}^{23} + 37\cdot2^{\circ}$ (CHCl<sub>3</sub>), and (S,R)-(2a),<sup>5</sup>  $[\alpha]_{25}^{25} + 100\cdot9^{\circ}$  (CHCl<sub>3</sub>), had previously been prepared in optically pure form starting from

TABLE. Asymmetric synthesis in the reduction of p-MeC<sub>6</sub>H<sub>4</sub>S(O)N=C(Ph)R<sup>a,b</sup>

| R             | Sulphinamides (2) |    |    |              | Sulphonamide (3)°                                   |                 |              | Amine (5)°           |               |              |                              |                       |
|---------------|-------------------|----|----|--------------|-----------------------------------------------------|-----------------|--------------|----------------------|---------------|--------------|------------------------------|-----------------------|
|               |                   |    |    | Yield<br>(%) | $\left[ \alpha \right]_{\mathbf{D}}^{\mathbf{25d}}$ | Diast.<br>ratio | Yield<br>(%) | $[lpha]_{ m D}^{25}$ | M.p.<br>(°Ĉ)  | Yield<br>(%) | $[\alpha]^{25}_{\mathbf{D}}$ | Optical<br>purity (%) |
| Me            | ••                |    |    | 84           | $+42\cdot3^{\circ}$                                 | 9:1             | 64           | —64·6°e              | 8891          | 70           | -31·3°f                      | 78                    |
| $\mathbf{Et}$ | ••                |    | •• | 80           | $+49{\cdot}2^{\circ}$                               | 8:2             | 63           | —41·7°₫              | 100 - 102     | <b>72</b>    | -12·1°f                      | 57                    |
| α-Naj         | phthyl            | •• | •• | 85           | $+56.0^{\circ}$                                     | 9:1             | 90           | $+3\cdot4^{\circ d}$ | 150 (decomp.) | 60           | $+52 \cdot 4^{\circ e}$      | 80                    |

<sup>a</sup> Reactions were carried on in anhydrous diethyl ether at 25 °C with 1 mol of LiAlH<sub>4</sub> per mol of substrate. <sup>b</sup> All new compounds gave satisfactory elemental analysis and spectra (i.r., <sup>1</sup>H n.m.r.) in agreement with the assigned structure. <sup>c</sup> The absolute configura-tion of (3a-c) and of (5a-c) was (S). <sup>d</sup> In CHCl<sub>3</sub>. <sup>e</sup> In benzene. <sup>f</sup> Neat.

optically pure  $\alpha$ -phenylethylamine (5a). Since reduction of (1) does not effect the chiral sulphur atom, a comparison of the values of the optical rotations of the mixture of (S,S)-(2a) and (S,R)-(2a) and of (-)-(S)-(3a) with those reported in the literature<sup>4,5</sup> established that the prevailing isomer obtained from (S)-(1a) has the (S,S)-(2a) absolute configuration and that the value of asymmetric induction is in this case 80%. The sulphinamides (2a-c) were subjected to acid methanolysis according to Mikolajczyk's method<sup>6</sup> to give the optically active amines (-)-(5a), (-)-(5b), and (+)-(5c), respectively, and the optically active methyl toluene-p-sulphinate (-)-(S)-(4).

In all cases the optical purity of the amines (5) thus obtained was in excellent agreement with the extent of asymmetric synthesis determined by <sup>1</sup>H n.m.r. spectral

evaluation of the diastereomeric ratio of the starting sulphinamides (2) (see Table). The signs of the optical rotations of (5a-c) indicate that the absolute configurations of the predominating diastereometic sulphinamide are (S,S)-(2a), (S,S)-(2b), and (S,S)-(2c).

The series of reactions reported here allows the transformation of an achiral precursor, a nitrile, into a chiral amine of high, and known, optical purity. In the process asymmetry is transferred from menthol to the sulphur atom of the sulphinate ester and of N-alkylidenesulphinamides (1) and from this to the asymmetric carbon atom of the amines (5).

(Received, 8th July 1977; Com. 693.)

- <sup>2</sup> F. Montanari in 'Organic Sulphur Chemistry,' ed. C. J. M. Stirling, Butterworths, London, 1975, p. 181.
- <sup>2</sup> E. U. Jonsson, C. C. Bacon, and C. R. Johnson, J. Amer. Chem. Soc., 1971, 93, 5306, and references therein.
  <sup>4</sup> M. B. Watson and G. W. Youngson, J. Chem. Soc., 1954, 2145.
  <sup>5</sup> T. R. Williams, A. Nudelman, R. E. Booms, and D. J. Cram, J. Amer. Chem. Soc., 1972, 94, 4684.
  <sup>6</sup> M. Mikolajczyk, J. Drabowicz, and B. Bujnicki, J.C.S. Chem. Comm., 1976, 568.

<sup>&</sup>lt;sup>1</sup> M. Cinquini and F. Cozzi, J.C.S. Chem. Comm., 1977, 502.